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PREAMBLE 

1. The urgency of the thesis 

In recent years, the research and application and development of steel - concrete composite 

structures in the world and in Vietnam in the field of structural construction has been 

interested by researchers and engineers. 

When analyzing and calculating structures, they often use traditional design methods, 

including 2 steps: Step 1: Using linear elastic analysis and the principle of collaboration to 

determine internal forces and displacements of structural system. Step 2: Check the bearing 

capacity, stress limits, stability of each individual component. 

This traditional design method has been applied for a long time and has the advantage of 

simplifying the design work of an engineer. However, it does not clearly show the nonlinear 

relationship between load and displacement, does not clearly show the nonlinearity of the 

structural material, has not fully considered the behavior of the entire structure so it leads to 

the material fee. The problem of nonlinear analysis, the force-displacement relationship is 

nonlinear, must be repeat solved because the structure has been deformed with the previous 

load and the structural stiffness is weakened, the computer will update the geometric data, 

material properties after each load change so that it will be close to the actual behavior of the 

structure. Recently, in the world, when analyzing nonlinear structures, in the standards and 

researchers often use two basic methods: zone plastic method and plastic hinge method. 

The zone plastic method considers the development of the plastic zone slowly as the force 

exerts on the structure, the plasticity of the elements will be modeled by discrete components 

of a finite element (divide element bar into n elements) and divide the section into fibers. This 

method is an accurate way to test other analytical methods, but this method is complex and 

requires a large analysis time (hundreds of times calculated by the plastic hinge method - 

according to Ziemian). Therefore it is not suitable for calculating the actual building, only 

suitable for simple structures, so this method is rarely applied in practice. 

The plastic hinge method is a simplified model of the real structure with the assumption 

that the length of plastic zone lh = 0, whereby it is assumed that during the process of bearing 

plastic deformation appears and develops only at the two ends of the element, the remaining 

sections in the bar remain elastic deformation. When conducting plastic analysis, the 

researchers used the plastic surfaces of Orbison 1982, AISC-LRFD 1994 to consider the yield 

condition of the cross section, the plastic surfaces has many limitations so it has not been 

reflected realable behavior of structural systems under load. 

Through the above analysis, it can be seen that the problem of constructing the plastic 

analysis method of the frame structure with steel column and composite beam support the 

static load for the problem of spreading plasticity analysis of the structural system and the 

limit load problem of the system the structure, including the spreading plasticity of the 

composite beam section, the steel column and the plastic deformation zone along the element 

length and the plastic flow rate of the section, is significant scientific and practical in 

analyzing the structure and necessary to be researched and applied. 

Therefore, the thesis chooses the research topic: "Plastic analysis of the frame structure 

with steel column and composite steel-concrete beam support the static load" 

2. Research purposees 

i) Building the curve (M-) relationship of the composite steel-concrete beam taking into 

account the plasticity of the material to reflect the actual behavior of the composite beam 

structure support load; ii) Building the equation of elastic limit surface, intermediate plastic 

surface, fullly plastic surface (failure surface) of  the doubly symmetrical wide flange I-
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section under axial force combined with biaxial bending moments to predict the bearing 

capacity of column section steel and builded plastic surface  have been applicated into the 

nonlinear analysis of structural systems; iii) Building a finite elements method and computer 

program applied to nonlinear analysis of the frame structure with steel column and composite 

steel-concrete beam considers the plasticity of the material and the distributed plasticity of 

the structural system. 

3. Object and scope of researchs 

- Object of research: Nonlinear analysis of the frame structure with steel column and 

composite steel-concrete beam support static load considers the plasticity of the material  

- Scope of research: beam structure, plane frame structure with steel columns and 

composite steel-concrete beams; model of steel materials regardless of the consolidation 

period and nonlinear model of tensile and compressive concrete materials; plastic analysis 

model of the structural system: plastic deformation model spread along the element length; 

load applied to the structure: static and non-reversible load during the analysis; regardless of 

the effect of shear deformation in the component; not taking into account the local buckling 

of the section and the lateral buckling of the component; geometrical nonlinearities are not 

considered in the analysis process.  

4. Research Method 

- Using the theoretical research method (analytic method) to develop the nonlinear 

analysis theory of the frame structure with steel column and composite steel-concrete beam 

considering the plasticity of the material and the distributed plasticity of the system structure. 

- Applying nonlinear decomposition algorithms to build computer programs based on 

theoretical research results and use to verify the achieved results, in order to accurately and 

ensure reliability, as well as the feasibility of the results achieved. 

5. Scientific and practical significance of the thesis 

i) Building the curve (M-) relationship of the composite steel-concrete beam taking into 

account the plasticity of the material to reflect the actual behavior of the composite steel-

concrete beam structure support load; ii) Building the equation of elastic limit surface, 

intermediate plastic surface, fullly plastic surface (failure surface) of the doubly symmetrical 

wide flange I-section under axial force combined with biaxial bending moments to predict the 

bearing capacity of column section steel and builded plastic surface have been applicated into 

the nonlinear analysis of structural systems; iii) Building a finite elements method with plastic 

multi-point bar elements and computer program applied to nonlinear analysis of the frame 

structure with steel column and composite steel-concrete beam considers the plasticity of the 

material and the distributed plasticity of the structural system; iv) Building an application 

computer program for nonlinear analysis of of the frame structure with steel column and 

composite steel-concrete beam considers the plasticity of the material and the distributed 

plasticity of the structural system reliably and effectively, apply the program to perform 

plastic analysis problems. 

6. New contributions of the thesis 

a) Building the curve (M-) relationship of the steel and composite steel-concrete beam 

to determine the tangent stiffness of these components at different points when the material 

works in the elastic phase, elastic - plastic and plastic. Establish SPH program to build this 

relationship. 

b) Building the equation of elastic limit surface, intermediate plastic surface, fullly plastic 

surface (failure surface) of the doubly symmetrical wide flange I-section subjected to axial 

force combined with biaxial bending moments to predict the bearing capacity of section steel 

column corresponding to a certain design load. 
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c) Building calculations by finite element method and computer program to analysis the 

frame structure with steel column and composite steel-concrete beam, taking into account the 

material nonlinearity when forming multipurpose plasticity points. From this application 

program, it is possible to determine the limit load factor, plastic flow rate of the section, 

internal force, displacement of the structure corresponding to different load levels, thereby 

determining the amount of security full reserve of the structure compared to the design data. 

7. The structure of the thesis 

The thesis has 4 chapters, introduction, conclusion and appendices 

CONTENTS 

CHAPTER 1. OVERVIEW OF RESEARCH ISSUES 

1.1.  Introduction of the frame structure with steel column and composite steel-concrete 

beam 

Studies of composite structures in the world are increasingly being studied more and in 

many different approaches. In Vietnam, this type of structure has only been studied and 

applied in the last 10 years and mainly focuses on the study of components and connection 

calculations, the overall analysis of the structure when the load is low researched, so the 

approach to studying this type of structure has scientific and practical significance in the 

construction industry. Within the scope of the thesis, the author has just stopped at studying 

plane frames with steel columns and composite steel-concrete beams. 

1.2. Trends in analysis, design of steel structures and composite structures 

Currently,when analyzing 

and calculating steel structure 

and composite structure, it is 

often used traditional 

methods (Figure 1.1). All 

three methods of ADS, PD, 

LRFD require separate 

inspection of each 

component, especially taking 

into account the K factor, not 

considering the full behavior 

of the entire structure so that 

it leads to waste material. 

 

Figure 1.1. structural design and analysis method 

Therefore, it is necessary to study modern design (advanced analysis) and only perform in 

one design step because it will accurately reflect the actual working of the structural system, 

accurately predict the type of plastic demolition and the limited load of the frame structure 

under static load and is essential to the reliability of the design. 

1.3. Nonlinear analysis and nonlinear analysis levels 

1.3.1. Nonlinear analysis 

The problem of nonlinear analysis, the force-deformation relationship is a curve, so it must 

be cyclic solved because the structure has been deformed with the previous load and the 

structural stiffness is weakened, the computer will update the geometric data, material 

properties after each load change. The two basic methods used by the researchers when 

analyzing nonlinear structures are the plastic hinge method and the plastic zone method 

(Figure 1.2). Some researches on nonlinear materials such as Chan and Chui, White, Wrong, 

Chen and Sohal, Chen, Kim and Choi, Yong et al, Orbison and Guire, Nguyen Van Tu and 

Vo Thanh Luong. 
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1.3.2. Nonlinear analysis levels 

In structural analysis, it is difficult to model all nonlinear factors related to structural 

behavior as in reality in detail. The most common levels of nonlinear analysis are described 

by the behavioral curves of the static load frame by authors Chan and Chui, Orbison, Nguyen 

Van Tu, Vu Quoc Anh, Nghiem Manh Hien, Balling and Lyon refers to: first-order elastic 

analysis, second-order elastic analysis, first-order elastic plastic analysis, second-order elastic 

plastic analysis. 

1.4. Nonlinear model of steel and concrete materials 

The thesis used the ideal elastic model according to Eurocode 3 for steel materials, Kent 

and Park models (1973) for compressible concrete materials, Vebo and Ghali models (1977) 

for tensile concrete materials. 

1.5.  Moment – curvature relationship of steel section beam (M-) 

The process of plastic flow on the section consists of 3 stages: elastic, elastic-plastic and 

fully plastic (Figure 1.3) ASCE, Michael, Vrouwenvelder. 

 
Figure 1.2. Methods of nonlinear material analysis 

 

 
Figure1.3.(M-)relationship 

of section steel beam 

1.6. Plastic surface of steel columns 

The concept of plastic surface is given to mention the simultaneous effect of axial force 

and bending moment based on internal force of element. When the bending moment and the 

axial force in the element reach the yield surface, the plastic hinge is formed. Some typical 

plastic surface has been proposed and applied with many studies: Orbison, Duan and Chen, 

AISC-LRFD. This thesis presents the method of constructing the intermediate plastic surface 

to show the plastic spread across the section in the plastic analysis process of the structure. 

1.7.  The method of the frame structure analysis when plastic hinge formde 

The popular analysis method is 

the finite element method as 

shown in Figure 1.4 with many 

authors used to analyze such as: 

Chan and Chui, White, Wrong, 

Chen, Kim and Choi, Orbison and 

et al, Liew and Chen, Kim and 

Choi , Cuong and Kim, Doan Ngoc 

Tinh Nghiem and Ngo Huu Cuong, 

Abaqus, Ansys, Midas, Adina. 

 
Figure 1.4. beam - column element model in finite 

element 
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CHAPTER 2: BUILDING MOMENT – CURVATURE RELATIONSHIP OF STEEL 

SECTION BEAM AND PLASTIC SURFACE OF STEEL SECTION COLUMN 

2.1.  Building momnent – curvature relationship of steel section beam by the analytical 

method 

The building of moment - curvature relationship of beam section to calculate tangent 

stiffness at the plastic deformation positions, is the basis for element stiffness and is used in 

the plastic analysis problem of the structural frame shown in the following chapters. Survey 

deformation stress diagram of section I steel beam as shown in Figure 2.1. 

 
Figure 2.1. Stress and deformation diagram of section I in the main axis z  

2.1.1. Plastic moment in main axis (axis z)  

- Elastic rotation in axis z: z,e y2f / hE           (2.1) 

- Elastic moment: 
3 3 3

z
z,e w f

E h h h
M 2 b t b t

3 2 2 2

       
                    


        (2.2) 

- Elastic limit moment:
3 3 3

y

z w f

f4 h h h
M b t b t

3 h 2 2 2

       
                    

    (2.3) 

- Elastic-plastic moment:  

+ Case 
 

2 2

2

y y

z

f f

hE h t E
 


 or

   ,

2 2 2 2
0

2 2

y y y

z p

f f f t

h t E hE E h t h


 
        

 

3 23 3 2

y y f yz w z f
z

z z

f f b fEb Ebh h h
M 2 t t

3 2 3 E 2 2 2 E

            
                                  

 

 
     (2.4) 

+ Case 
 

2

2

y

z

f

h t E
 


 or 

   ,

2 2 2 2

2 2

y y y

z p

f f f t

h t E hE E h t h


 
       

 

 
22

y w y w y y f

z

z

f b f b f f b th
M 2 t h t

2 2 6 E 2

   
       

    


            (2.5) 

- Maximum moment value:  
2

y w y f

z,max

f b f b th
M 2 t h t

2 2 2

  
     

   

      (2.6) 

2.1.2. Plastic moment in auxiliary axis (axis y) 

- Elastic rotation in axis y:
, 2 /y e y ff b E                         (2.9) 

- Elatic moment:  3 3

y f w y
M 2b t b h 2t E /12                        (2.10) 

- Elastic limit moment:  3 3

y,e f w y fM 2b t b h 2t f / 6b                      (2.11) 

- Elastic-plastic moment:+ Case 
2 2y y

y

f w

f f

b E b E
   or

,

2 2 2
0

y y y f w

y p

w f w f

f f f b b

b E b E E b b


 
      

 

 

0

M M
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 

2 2

y y y y2 3

y y f w

y y

f f f E1
M f b 2 t 2 t b h 2t

2 E 6 E 12

    
                



 
             (2.12) 

+ Case 
2 y

y

w

f

b E
  ,  

3

y2 2 2

y y w y f w2 2

h.f1 1 1
M .h.f .b . .t.f . b b

4 3 .E 2
   


                  (2.13) 

- Maximum moment value:  2 2

y,max f w yM 2b t b h 2t f / 4                (2.14) 

2.2.  Building momnent - curvature relationship of composite section beam by the 

analytical method 

Use nonlinear material model of concrete. To determine the moment M+, M- of the 

composit section beam, it is necessary to determine the moment of each component of Mc 

concrete slab, Ma floor reinforcement and Ms steel beam, then recombine. 

 
                                             (a)                                            (b) 

Figure 2.2. Stress and deformation diagram of composit section beam in the main axis 

The position of the new plastic neutralizing axis (PNA) y0: determined from the 

equilibrium condition shown in Figure 2.2 with the equilibrium equation: 

c a s1 s2 rc
F F F F F 0                              (2.15) 

M = Mc + Ma + Ms + Mrc            (2.16) 

2.2.1. Considering concrete slab component 

When the concrete slab 

is working, the deformation 

of points on the bottom of 

the slab i (cb) and the top of 

the slab j (ct) can be 

achieved in stress positions 

(points A, B) on chart c - c 

of concrete material as 

shown in Figure 2.3. From 

the deformation of those 

positions, we can determine 

the integral area on the chart 

c - c of the material and 

determine the components 

Fc, Mc of concrete slabs. 

 
Figure 2.3. The integral area on the chart c - c of the 

concrete material 

- Case of tension concrete 
2

1

. 0,5  
y

c f c
y

F b E ydy ;  
2

1

10.8 ( )    
y

c f ct c c
y

F b f E y dy ;  
2

1

20,5 0,075 ( )    
y

c f ct c c
y

F b f E y dy  

                  (2.17) 

0

M
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2

1

0,5  
y

c f c
y

M b E yydy ;  
2

1

10,8 ( )    
y

c f ct c c
y

M b f E y ydy ;       (2.18) 

 
2

1

20,5 0,075 ( )    
y

c f ct c c
y

M b f E y ydy           (2.19) 

- Case of compression concrete 

2

1

2

0 0

2
  
    
   

 

 

y

c f c
y

y y
F b f dy ;  

2

1

01      
y

c f c
y

F b f Z y dy ; 
2

1

0,2 
y

c f c
y

F b f dy    (2.20) 

2

1

2

0 0

2
  
    
   

 

 

y

c f c
y

y y
M b f ydy ;  

2

1

01      
y

c f c
y

M b f Z y ydy ;
2

1

0,2 
y

c f c
y

M b f ydy   (2.21) 

2.2.2. Considering steel beam component 

- Case of compression steel 
2

1

  
y

si i s
y

F b E ydy ; 
2

1

 
y

si i s
y

F b f dy ; 
2

1

  
y

si i s
y

M b E yydy ; 
2

1

 
y

si i s
y

M b f ydy      (2.22) 

- Case of tension steel 
2

1

  
y

si i s
y

F b E ydy ; 
2

1

 
y

si i s
y

F b f dy ; 
2

1

  
y

si i s
y

M b E yydy ; 
2

1

 
y

si i s
y

M b f ydy      (2.23) 

2.2.3. Considering reinforcement slab component 

- Case of compression reinforcement 
2

1;     a s s a s s sF a E y M a E y khi ; 1; w  a s y a s y sF a f M a f y hen        (2.24) 

- Case of tension reinforcement 
2

3;     a s s a s s sF a E y M a E y khi ; 3; w  a s y a s y sF a f M a f y hen       (2.25) 

2.3. Diagram of SPH program building M- of the composite beam by the analytical 

method.  

 

Figure 2.4. Diagram of SPH program 

building M- of the composite beam by the 

analytical method.   
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2.4.  Building the equation of elastic limit surface of  I-section under axial force 

combined with biaxial bending moments by analytical method 

Building the equation of elastic limit surface, intermediate plastic surface, fullly plastic 

surface (failure surface) of the doubly symmetrical wide flange I-section under axial force 

combined with biaxial bending moments  

2.4.1. Building the equation of elastic limit surface (P-Mz) of I-section supported 

compression and bending in main plane 

- Maximum axial force:  max 2 2   y w y f yP f b h t f b t Af             (2.26) 

- Maximum moment without axial force:  
2

,max 2
2 2 2

  
     

   

y w y f

z

f b f b th
M t h t         (2.27) 

- Maximum moment with axial force: 

Case 1:  2w yP b h t f   then    
2 21

2
4 4

y w

z y f

y w

f b
M f b t h t h t P

f b
                    (2.28) 

Case 2:    2 2 2w y y w y fb h t f P f b h t f b t      

   2 21 1 1
2

2 2 2

y w y w

z y f

y f y f

P f b h t P f b h t
M f b t h t

f b f b

      
        

    

            (2.29) 

2.4.2. Building the equation of elastic limit surface (P-My) of I-section supported 

compression and bending in auxiliary plane 

- Maximum moment without axial force: ,max

1

4
   y f f y w w yM A b f A b f          (2.30) 

- Maximum moment with axial force: 

Case 1: w yP b hf  then  2
2

4 8
y y f f w w

y y y y

h tt P P P P
M f b b b b

f h f h f h f h

      
                

       

 

Case 2:  2 2w y y w y fb hf P f b h t f b t                          (2.31) 

   2 2
2

2 4 2 4

f y w f y w

y y

y y

b P f b h t b P f b h t
M f t

f t f t

      
       

    

                     (2.32) 

2.4.3. Building the equation of fullly plastic surface (failure surface) (P-Mz-My-) of I-

section supported axial force combined with biaxial bending moments 

Investigation of I-section subjected to P-Mz-My as Figure 2.5. To determine the 

relationship P-Mz-My-, separate the stresses caused by P, Mz and My. The new plastic axis 

NA will divide the section into compression and tension areas. Based on the angle  and the 

force P to determine the distance y0 (d), from that the cases of new plastic axis (NA) are 

determined as shown in Table 2.1. From the position of new plastic axis NA, Mz,My value is 

determined. 

The coordinates of points in the new coordinate system with respect to the coordinates 

of points in the old coordinate system are: 

cos sin z z y  , sin cos  y z y  .  

Algorithm for calculating the moment My and Mz when knowing the axial force P is as 

follows: determining the axial force values Pi corresponding to the points there 0iy  ; 

arranged in ascending axial force 1i iP P ; find the position of P in the list: 1i iP P P  ; 

interpolate to find the distance d corresponding to P ; determining My and Mz from d values 

 determining P-Mz-My- relation. 
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Figure 2.5. Steel section column, stress diagram and plastic surface of I steel section column 

Table 2.1. The general cases of the neutral axis correspond to the angle   

Neutral axis cases can occur with the I-shaped section 

    

CASE 1 CASE 2 CASE 3 CASE 4 
 

   

 
 

CASE 5 CASE 6 Web TH1 Web TH2 Web TH3 

2.4.4. Elastic limit surface (P-Mze0-Mye0-) of I-section supported axial force combined with 

biaxial bending moments 

0 0 1ye zep m m   ; ye y yM W f ; ze z yM W f                  (2.33) 

0 0

1
tan

tan


 


ye ye ye y y

f

p
M m M f W

h

b





;
0 0

1

1 tan


 


ze ze ze y z

f

p
M m M f W

b

h


              (2.34) 

2.4.5. The relationship equation My - P - y; Mz - P - z curved segment transition from elastic 

to fully plastic as shown in Figure 2.6 

0

0
0

0

1


 






y ye

y ye
y ye

y yu ye

M M

EI M M

 

 
; 0

0
0

0

1


 






z ze
z ze

z ze

z zu ze

M M

EI M M

 

 
                   

(2.35) 

0

4 443 3 3

2 221 1 1

M

P

10 1010
9 9 9 8 88

7 7 7

6 665 5 5

M

0

12 121211 11 11

0 0 0 0

0 0 0 0 0
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Figure 2.6. (a) - relationship 

curve My - P - y;  

(b) - relationship curve  Mz - P - 

z 

 
  (a)                                                                 (b) 

For each value of p, there is the p-mz-my relation of the fully plastic surface which is the 

horizontal section of the fully plastic cross section of W14x426 steel column shown in Figure 

2.8 and the elastic limit surface as shown in Figure 2.7. If the force point is inside the p-mz-

my elastic limit line, the section is still elastic, if the point is located between the elastic limit 

line and the fully plastic curve, the section will yield partially, if the point the force outside 

the p-mz-my fully plastic curve is completely broken. This has practical implications when 

testing the bearing capacity of steel cross section (Figure 2.10). 

 

 
Figure 2.7.  section  of elatic limit surface 

my - mz - p -  - (=0) of W14x426 steel 

column section by analytical method 

 
Figure 2.8. Comparison of section of fully 

plastic surface my - mz - p -  -  of 

W14x426 steel column section by proposed 

method and other studies 
 

 
 

Figure 2.9. Comparison of fully plastic 

surface P-Mz of steel column cross section 

 
Figure 2.10. Elastic limite, intermediate 

plastic, fully plastic surface of steel column 

O

0

M

O

0

M
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W14x426 by analytical method and other 

studies 

cross section W14x426 by analytical 

method (p=0) 

From Figures 2.8 and 2.9, it is shown that the plastic surfaces of different studies and the 

proposed plastic surfaces are approximately identical, so the proposed plastic surface was 

constructed by analytical method with high reliability. 

CHAPTER 3: A FINITE ELEMENTS METHOD OF ANALYSIS STRUCTURE WITH 

STEEL COLUMN AND COMPOSITE STEEL – CONCRETE BEAM  CONSIDERS THE 

DISTRIBUTED PLASTICITY OF THE ELEMENTS  

3.1. Assumptions when performing analytical problems 

All the bar elements of the structural system when unloaded are straight and have a 

constant cross-sectional area. When the bar elements are flexible, the cross section is still flat 

and orthogonal to the x-axis (the local coordinate system of the element); plastic deformation 

that appears and develops in elements of a structure is distributed plastic deformation, so 

plastic deformation can exist in all sections during load bearing process; deformation and 

displacement of the structural system are small, ignoring nonlinear geometry; The link 

between concrete floor and steel girder is fully bonded; Ignore displacements due to shear 

distortion; consider only flexible working materials, bypassing the consolidation stage. 

3.2.  Building plastic multi point beam – column elements  

The author of the thesis proposes a plastic multi-point  beam-column element as shown 

in Figures 3.1 and 3.2. Model of girder element is an element with only two nodes with two 

ends of the element, assuming there are n continuous plastic deformation points inside the 

element (flexible plastic points), each segment of xi - xi + 1 consists of two consecutive plastic 

deformation points and this segment has the stiffness EIi(x) varies with the function of degree 

3 (see appendix 2), the stiffness EIi(xi) is determined through the moment-curvature 

relationship curve (M--P). With this proposed element, it is not necessary to divide the 

element into many sub-elements as some studies have done. Using plastic multi-point bar 

elements has the advantage of giving accurate results compared to the actual working of the 

structure, significantly reducing the size of the structural analysis problem, increasing the 

calculation speed quickly, giving know the plastic flow rate of the section, the order of 

formation of plastic joints and the flexible plastic behavior of the entire structure, from which 

it is possible to predict and evaluate the reserve or safety of the structure. The location of 

flexible joints in any bar depends on the plastic flow of the section during structural analysis. 

Model of girder, flexible multi-point columns are shown in Figure 3.1, 3.2. 

 
Figure 3.1. Phần tử dầm liên hợp đa điểm 

dẻo 

 
Figure 3.2. Phần tử cột thép đa điểm dẻo 
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3.3. Building stiffness matrix of composite beam, plastic multi-point plane column 

column when mentioning the the distributed plasticity along element length  

Assuming there are n continuous plastic deformation points inside the element, the 

number and distribution of plastic points are set by the user on each element and according to 

the law of uniform distribution over the element length as shown in Figure 3.1. Each segment 

xi - xi+1 consists of two consecutive plastic deformation points and this segment has the 

stiffness EIi(x) varies with the function of order 3 

 
3

( )  zEI x ax b , where:  3 3
1 t t

i ia EI EI
L

; 3 t

ib EI .                      (3.1) 

Considering any element with 2 nodes 1 (the first node) and 2 (the last node) with internal 

forces and displacements as shown in Figure 3.3, establish the knot force relationship of the 

element. Determine the offset energy of deformation: 

   i 1 i 1

i i

2 2
x xn 1 n 1

* x 1 1

i 1 i 1x x
z z

M V x M1 1
U dx dx

2 EI (x) 2 EI (x)

  

 

  


                     (3.2) 

 
Figure 3.3. The force of the bar and the tangent stiffness at the position have plastic 

deformation 

Apply the Engesser theorem and solve the equation: *

1 1
dU / dV v ; *

1 1
dU / dM   ; identify 

values M1, V1, M2, V2 of each node. From the internal force results M1, V1, M2, V2 at the first 

and end nodes of the element and based on the equilibrium equation:    e
NL k . u , arrange 

the stiffness components into the stiffness matrix of composite beam elements, flexible multi-

point plane column. The result is the stiffness matrix as shown in formula 3.3. Stiffness 
t

iEI

(kt) - tangent stiffness at the position of plastic deformation, with beams determined through 

the M- relationship curve as shown in Figure 3.3, with columns determined through P-M- 

in Figure 2.6. 

 

11 14

22 23 25 26

32 33 35 362

41 44

52 53 55 56

62 63 65 66

0 0 0 0

0 0

0 0

0 0 0 0

0 0

0 0

 
 
 
 

         
 
 
 
  

d d

p p

k k

k k k k

k k k k
k k

k k

k k k k

k k k k

(3.3) 

 

Where: The components in the 

matrix (3.19b) are determined as 

follows: 
11

11 44
1

1
1/

( )





   
i

i

xn

i x

k k dx
EA x

 

1( ) ( )  i i i

x
A x A A A

L
 

11

14 41
1

1
1/

( )





    
i

i

xn

i x

k k dx
EA x

 

 

Put Bz = 
1 1 1 1

2
1 1 1 1

1 1 1 1

1
. .

( ) ( ) ( ) ( )

      

   

      
i i i i

i i i i

x x x xn n n n

i i i ix x x xz z z z

x x x
dx dx dx dx

EI x EI x EI x EI x
 

Put Cz = 
1 1 1 1

2 2
1 1 1 1

1 1 1 1

2 1
. .

( ) ( ) ( ) ( )

      

   

   
      

i i i i

i i i i

x x x xn n n n

i i i ix x x xz z z z

L Lx x L x L x
dx dx dx dx

EI x EI x EI x EI x
 

A

E
B

C

M

D
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11

1

22

1

( )





 



i

i

xn

i x z

z

dx
EI x

k
B

;

11

1

23 32

( )





 

 

i

i

xn

i x z

z

x
dx

EI x
k k

B
; 

11

1

25 52

1

( )





 

  

i

i

xn

i x z

z

dx
EI x

k k
C

;

11

1

26 62

( )






 

  

i

i

xn

i x z

z

L x
dx

EI x
k k

C
 

     

1
21

1

33

( )





 



i

i

xn

i x z

z

x
dx

EI x
k

B
;

11

1

35 53

( )





 

 

i

i

xn

i x z

z

x
dx

EI x
k k

C
;

1
21

1

36 63

( )






 

 

i

i

xn

i x z

z

Lx x
dx

EI x
k k

C
;

11

1

55

1

( )





 



i

i

xn

i x z

z

dx
EI x

k
C

;  

     

11

1

56 65

( )






 

 

i

i

xn

i x z

z

L x
dx

EI x
k k

C
;

1
2 21

1

66

2

( )





 
 



i

i

xn

i x z

z

L Lx x
dx

EI x
k

C
; t

ti i i i
k EI dM / d   ; t

t (i 1) i 1 i 1 i 1
k EI dM / d

   
     

3.4. Building stiffness matrix of 3D column elements when mentioning the the 

distributed plasticity along element length  

Building similar to the plastic multi-point column having a stiffness matrix of 12x12 of 

the 3D plastic multi-point column element when mentioning the the distributed plasticity 

along element length as formula 3.4. 

33

11 17

22 26 28 212

35 39 311

44 410

59 511

66 68 6123d

p

77

88 8

53

62

71

82 86

93 95

12

911

10

55

9

1

9

04 1

k 0 0 0 0 0 k 0 0 0 0 0

k 0 0 0 k 0 k 0 0 0 k

0 k 0 0 0 k 0 k 0

k 0 0 0 0 0 k 0 0

0 0 0 k 0 k

k

k

0

0 0

0 0 0

0 0 k 0

0 k 0 0 0

k 0 0 0 0 0

0 k 0 0 0 k 0

0 0 k 0 k 0 0

0

k 0 k 0 0 0 k
k

k 0 0 0 0 0

k 0 0 0 k

0 k 00

0 0 0 k 0 0 0 0

k

0 k

   

0

12

111113 115 119

122 1 26 1 12 28

10 0 k 0 k 0 0 0 k 0

0 k 0 0 0 k 0 k 0 0 0

0

k

k

0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                                                 

44 1010  TGI
k k

L
 

104 410   TGI
k k

L
 

11

11 77
1

1
1/

( )





   
i

i

xn

i x

k k dx
EA x

 

11

17 71
1

1
1/

( )





    
i

i

xn

i x

k k dx
EA x

 

11

1

22

1

( )





 



i

i

xn

i x z

z

dx
EI x

k
B

   (3.4)                           

Put By = 
1 1 1 1

2
1 1 1 1

1 1 1 1

1
. .

( ) ( ) ( ) ( )

      

   

      
i i i i

i i i i

x x x xn n n n

i i i ix x x xy y y y

x x x
dx dx dx dx

EI x EI x EI x EI x
;  

Put Cy = 
1 1 1 1

2 2
1 1 1 1

1 1 1 1

2 1
. .

( ) ( ) ( ) ( )

      

   

   
      

i i i i

i i i i

x x x xn n n n

i i i ix x x xy y y y

L Lx x L x L x
dx dx dx dx

EI x EI x EI x EI x
;  

11

1

26 62

( )





 

 

i

i

xn

i x z

z

x
dx

EI x
k k

B
;

11

1

28 82

1

( )





 

  

i

i

xn

i x z

z

dx
EI x

k k
C

;

11

1

212 122

( )






 

  

i

i

xn

i x z

z

L x
dx

EI x
k k

C
;

1
21

1

66

( )





 



i

i

xn

i x z

z

x
dx

EI x
k

B
 

11

1

68 86

( )





 

 

i

i

xn

i x z

z

x
dx

EI x
k k

C
;

1
21

1

612 126

( )






 

 

i

i

xn

i x z

z

Lx x
dx

EI x
k k

C
;

11

1

88

1

( )





 



i

i

xn

i x z

z

dx
EI x

k
C

;

11

1

812 128

( )






 

 

i

i

xn

i x z

z

L x
dx

EI x
k k

C
 

1
2 21

1

1212

2

( )





 
 



i

i

xn

i x z

z

L Lx x
dx

EI x
k

C
;

11

1

33

1

( )





 



i

i

xn

i x y

y

dx
EI x

k
B

;

11

1

35 53

( )





 

  

i

i

xn

i x y

y

x
dx

EI x
k k

B

11

1

39 93

1

( )





 

  

i

i

xn

i x y

y

dx
EI x

k k
C

11

1

311 113

( )






 

 

i

i

xn

i x y

y

L x
dx

EI x
k k

C
;

1
21

1

55

( )





 



i

i

xn

i x y

y

x
dx

EI x
k

B
;

11

1

59 95

( )





 
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i

i

xn

i x y
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x
dx

EI x
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C
;
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1
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1

( )


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
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1
21

1

511 115

( )






 

 

i

i

xn

i x y

y

Lx x
dx

EI x
k k

C
;

11

1

911 119

( )






 
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i

i

xn

i x y

y

L x
dx

EI x
k k

C
;

1
2 21

1

1111

2

( )





 
 



i

i

xn

i x y

y

L Lx x
dx

EI x
k

C
;   

Tangent stiffness EIit (kit) is determined as follows: 

 
2

0

  
      

y yu y

y yt
y yu ye

M M M
EI EI

M M
;  

2

0

 
   
  

zu zz
z zt

z zu ze

M MM
EI EI

M M
       (3.5) 

3.5. The converted load vector of a plastic multi-point bar element has a continuous 

plastic deformation point along the element length  

3.1.1. . The load is 

distributed on plastic 

multi-point bar elements 

 

 
                             (a)                                                    (b) 

Figure 3.4.(a)The distributed load on elements (b) the knot force relationship of the beam bar 

From Figure 3.4b there is a relationship of knot force of beams as follows:

  2

1 1
M x V x M 0.5qx    

Determine the compensatory energy of the deformation:
 i 1

i

2
xn 1

* x

i 1 x
z

M1
U dx

2 EI (x)





     (3.6) 

Apply the Engesser theorem and solve equations: 
*

1

1

dU
v 0

dV
  ; 

*

1

1

dU
0

dM
    identify values 

M1, V1, M2, V2 of each node.  
i 1 i 1 i 1 i 1

i i i i

i 1 i 1 i 1 i 1

i i i i

3 2 2x x x xn 1 n 1 n 1 n 1

i 1 i 1 i 1 i 1x x x xz z z z
1 2x x x xn 1 n 1 n 1 n 1

i 1 i 1 i 1 i 1x x x xz z z z

x x x x
dx dx dx dx

1 EI (x) EI (x) EI (x) EI (x)
M q

x x 1 x2
dx dx dx dx
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      (3.8) 

2 1
V V qL   ; 

2

2 1 1

qL
M V L M

2
               (3.9) 

The nodal load vector of a plastic multi-point bar element under a distributed load in a 

local coordinate system has elements equal to the counterpart but opposite of the jet, as shown 

in the following formula (3.10):    
T

1 1 2 2f V M V M                (3.10) 

3.1.2.  Consider the concentrated of Py load on the element 

 
            (a)                                                               (b) 
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Figure 3.5. (a) - The load is concentrated Py on elements (b) - the knot force relationship of 

the beam bar 

Consider the concentrated load perpendicular to the bar axis as shown in Figure 3.5a. From 

Figure 3.5b, there is a relationship between knot force of beams as follows:  

1 2 3 4
M(x) M (x) M (x) M (x) M (x)                      (3.11) 

the compensatory energy of the deformation: 

  i 1

i

2
xn 1

* * * * *x

1 2 3 4
i 1 x

z

M1
U dx U U U U

2 EI (x)





                        (3.12) 
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Apply the Engesser theorem and solve equations: 
*

1

1

dU
v 0

dV
  ; 

*

1

1

dU
0

dM
    identify values 

M1, V1, M2, V2 of each node.  
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The nodal load vector of a plastic multi-point bar element under the concentrated load in 

a local coordinate system has elements equal to the counterpart but opposite of the jet, as 

shown in the following formula (3.10):    
T

1 1 2 2f V M V M              (3.10) 

3.6.  Equation equilibrium for the whole structure 

In the general case of elastic-plastic bar structure, the stiffness matrix and the node load 

vector depend on the state of the bar element with the elastic and plastic nodal points. 

Therefore, the stiffness matrix and nodal load vectors of a structure system are determined 

through a set of stiffness matrices and the nodal load vector of the respective plastic point 

multi-point element. Thus, it can be affirmed that the equation of elastic-plastic structure is 

the nonlinear equation written in matrix form:      F K . U  where:                (3.21) 

[K] - stiffness matrix of a structure in a general coordinate system: 

     
T

pK T . k . T                              (3.22) 

 U - vector displacement node of the structure in the global coordinate system: 

          
T

U T . u                       (3.23) 

 F  - Vector node load of structure in the general coordinate system:     
T

F T . f    (3.24) 
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CHAPTER 4: BUILDING PLASTIC ANALYSIS PROGRAM AND SURVEYING A 

NUMBER OF PROBLEMS  

4.1. Method to solve balanced equations 

4.1.1. Nonlinear algorithm 

There are three main iterative methods for nonlinear analysis: Simple Euler load algorithm 

as shown in Figure 4.2 Chan and Chui, Newton-Raphson method as shown in Figure 4.3 and 

improved Newton-Raphson method as shown in Figure 4.4, Chan and Chui, Robert et al. 

 

 
Figure 4.1. Load - displacement behavior of the 

portal frame is subject to the load 

 
Figure 4.2. Schematic illustration 

of the simple Euler algorithm 

4.1.2.  Newton-Raphson and improved Newton-Raphson method  

The cumulative error results of the simple incremental technique can be minimized by a 

combined iteration in each load step during analysis. The iteration minimizes the unbalanced 

forces between external forces and internal resistance that occur at each load step by the 

improved Newton-Raphson and Newton-Raphson Method methods as shown in Figure 4.3, 

4.4. 

 
Figure 4.3. Schematic illustration of the 

Newton-Raphson method 

 
Figure 4.4. Schematic illustration of the 

improved Newton-Raphson method 

4.2.  Algorithm diagram of structural plastic analysis and SPH analysis program 

Algorithm diagram of SPH program for structural plasticity analysis is shown in Figure 4.5 

4.3.  Limited load coefficient and plastic flow rate of the section 

- Determine the limited load coefficient p of structure: 

p = limited load when system is failured/ Applied load             (4.1) 

From the coefficient p it is possible to assess the safety level of a structure under load. 

- Determine plastic flow rate of the section: % plastic flow=100% - 
t maxEI / EI x100%  (4.2) 
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Figure 4.5. Algorithm diagram of structural plastic analysis SPH program 
4.4.  Survey some plastic analysis problems 

4.4.1.  Composite steel – concrete simple beam  

Investigation of Composite steel - concrete simple beam with girder section including 

W12x27 steel, 102x1219mm concrete slab as shown in Figure 4.6. The concentrat force is P 

= 100 kN at the center of the beam, the load step is nstep = P/100. Compressive strength of 

concrete fc'=16MPa, fct=1.2MPa, elastic modulus of concrete Eb = 32,5.103 MPa, 0 = 0.002, 

u = 0.004. Yield stress of beam steel fy=252.4MPa, tensile strength of reinforcement steel 

fy=210MPa, elastic modulus of steel Es = 2.105 MPa, 2 layers of reinforcement floor 10a100 

(1110/1 layer). This beam structure was authored by Cuong Ngo Huu (2006) in his study 

and used the fiber method and Abaqus program to analyze. Applying the proposed research 

results (the distributed plasticity deformation method) to nonlinear analysis of beam structure 

with concentrated plastic hinge and distributed plastic hinge and gave the following results:  

 
Figure 4.6. Simple beam subjected to concentrated load 

Research 

name 

Mp p Difference 

from SPH 

SPH 283,7 0,82  

ABAQUS  0,82 0% 

SAP2000 282,2  0,53% 

Eurocode 4 275,3  2,96% 
 

Table 4.1. comparing values of p and Mp  
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Figure 4.7. Moment-displacement 

relationship at position middle beams 

 
Figure 4.8. Load-displacement relationship at 

position middle beams 

 
Hình 4.9. Plastic hinge formation of beam structure 

 
Figure 4.10. Stiffness EIt/EImax and plastic flow rate of the section at plastic failure state 

Commenting results::  

- From the graphs of figure 4.7 and figure 4.8, it can be clearly seen that when the material 

is still elastic, the results of the study completely coincide with the results running from the 

SAP2000 program, when the elastic plastic results are similar to the results previous research, 

which confirms the reliability of the research method, also shows that the load-displacement 

relationship is nonlinear, from elastic, elastic plastic and fully plastic, can be determined 

internally force of composite beam. 

- The results of the study were compared with the results of the author Cuong Ngo Huu 

(2006) showing that the displacement load relationship curve are similar and approximately 

identical (figure 4.8). From table 4.1: coefficient of limited load p of research method and 

coefficient p when analyzed by Abaqus and Cuong Ngo Huu (2006) coincide. The value of 

p of the problem = 0.82 <1 shows that when the applied load P = 82T, the system will be 

failured, the section of the middle span can no longer bear the strength and form plastic hinge. 

- From table 4.1: Research results of Mp value calculated by SPH are different from those 

of Mp calculated according to Eurocode 4 and Mp value calculated from SAP2000 is small 

(difference from 0,5 3%)  shows the reliability of the research method. 

- From the graph in Figure 4.8 shows that when using distributed plasticity method (18 

points of plastic deformation), it is found that when the structure is plastic, with the same load 

level for smaller displacement than the displacement of the concentrated plastic hinge method 

(2 points of plastic deformation). This shows that when using a multi-point plastic element, 

the beam structure is better than that of conventional elements. 

- From the graphs of figure 4.9, 4.10 shows the plastic hinge forming order, EIt/EImax 

stiffness and plastic flow rate (%) of beam section in plastic colapse state (p=0,82), section 

middle beam to plastic flow 100%, sections adjacent to plastic flow edge 89%, 16% .... 

Through the value of plastic flow rate, it is possible to evaluate the reserve of bearing capacity 

of each section in beam structure, which is a new point when using multi-point plastic 

elements in the proposed distributed plastic deformation method. 



19 

4.4.2.  Composite steel – concrete continuous beam  

Investigation of continuous beams tested by Ansourian (1981) with two samples of CTB1 

and CTB2 beams. Section beam includes IPE200 steel girder, 100x800mm concrete slab with 

CBT1 girder; 100x1300mm with beam CBT2 as shown in Figure 4.11; floor reinforcement 

using steel 10. Compressive strength (tension) of concrete fc
’ (fct) with beams CBT1 = 30 

(1,6) Mpa, with beams CBT2 = 50 (3,1) Mpa;  concrete = 2.310 kg/m3; elastic modulus of 

concrete according to Warner et al. 1998 is 
1.5 '0.043c cE f = 26,15.103MPa, 0 =0.002, u = 

0,004. Yield stress of beam steel fy = 277 MPa; tensile strength of steel floor fy = 430Mpa; 

elastic modulus of steel Es = 2.105MPa. Force P = 200kN with beam CBT1; P = 250kN with 

CBT2 girder, load step nstep = P/100. Applying the proposed research results, using the finite 

element method with distributed multi-point plastic bar elements (with 22 plastic deformation 

points) to analyze continuous beam structure and compare with experimental results and the 

results has been studied. 

 
Figure 4.11. 02 samples of CTB1 and CTB2 continuous beams support concentrated load in 

the middle span  

 
Figure 4.12. Load-displacement relationship 

at position middle beams CBT1 

 
Figure 4.13. Load-displacement relationship at 

position middle beams CBT2 
 

 
Figure 4.14. Plastic hinge formation of beam structure CBT1 

 
Figure 4.15. Stiffness EIt/EImax and plastic flow rate of the section at plastic failure state 

CBT1 
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Figure 4.16. Plastic hinge formation of beam structure CBT2 

 
Figure4.17. Stiffness EIt/EImax and plastic flow rate of the section at plastic failure state CBT2 

Table 4.2. Table comparing value of Mp of composite continuous beams CTB1, CTB2  
Value Mp  CTB1 Comparing of 

SPH (CBT1)  

CTB2 Comparing of 

SPH (CBT2)  

SPH 147,44  158,9  

TN Ansourian (1981)  152 1,8% 164 3,1% 

Eurocode 4 137 8,9% 145,8 9,0% 

Commenting results::  

- From the graphs of figure 4.12 and figure 4.13, it can be clearly seen that when the 

material is still elastic, the results of the study completely coincide with the results running 

from the SAP2000 program, When elastic plastic, the results coincide with the experimental 

results, which confirms the reliability of the research method, also shows that the load-

displacement relationship is nonlinear, from elastic, elastic plastic and fully plastic. 

- The results of the study were compared with the experimental results by Ansourian 

(1981) and Bradford MA, Uy B (2006) showing that the displacement - load relationship 

curve are similar and approximately identical. From Table 4.2 shows that the value of Mp 

calculated according to SPH compares with the results of Mp according to the Ansourian 

experiment (1981) and the value of Mp calculated according to Eurocode 4 is not much 

difference (with the CBT1 beam the different from 1,8% 8,9%, with CBT2 girder different 

from 3,1% 9,0%). That shows the reliability of the research method. 

- From the graphs of Figure 4.12 and Figure 4.13 shows that when using the method of 

flexible plastic distribution (22 points of plastic deformation), it is found that when the 

structure is flexible, with the same load level for smaller displacement than displacement of 

concentrated plastic hinge (2 points of plastic deformation). This shows that when using a 

multi-point plastic element, the beam structure is better than that of conventional elements. 

- From the graphs of Figure 4.14, 4.16 shows the order of forming plastic hinges, EIt/EImax 

stiffness and plastic flow rate (%) of the beam cross-section in plastic colapse state, the section 

between the first span of the CBT1 beam flowing 100% plastic, the sections adjacent to the 

plastic flow 92%, 91% .... the section middle the 1st beat and the pillow of CBT2 beams 

flowed 100% plastic, the sections adjacent to the plastic flow 90%, 94% .. ..According to the 

value of plastic flow rate, it is possible to evaluate the reserve of bearing capacity of each 

section in beam structure, which is a new point when using multi-point plastic elements in the 

proposed distributed plastic deformation method. 

4.4.3.  Composite steel - concrete portal frame with 1 floor and 1 span  

Investigation of composite steel-concrete frame with rigid connection at two ends of steel 

columns, W12x50 steel columns, cross section beam includes W12x27 steel and 102x1219 



21 

mm concrete slabs as shown in Figure 4.18 and Table 4.3. The concentrated load is applied 

P=150kN, loading step nstep=P/100. Compressive strength of concrete fc
'= 16MPa, 

fct=1,2Mpa, elastic modulus of concrete Eb = 32,5.103MPa, 0 = 0.002, u = 0.004. yield stress 

of beam steel fy = 252,4MPa, tensile strength of floor steel fy=210MPa, elastic modulus of 

steel Es = 2.105MPa, 2 layers of reinforcement floor 10a100 (1110/1 layer). Cuong Ngo-

Huu, Seung-Eock Kim (2012) used the fiber hinge method and Abaqus to analyze the above 

structure, with the steel structure modeled by 5852 S4R shell elements, the concrete slabs was 

modeled by 5376 parts solid C3D8R, analysis time is 48 minutes 20s. C.G Chiorean (2013) 

used the plastic distribution method using Ramberg-Osgood function to analyze. Applying 

the proposed research results, using the finite element method with distributed multi-point 

plastic bar elements with column element using 5 plastic deformation points, beam element 

using 22 plastic deformation points to analyze Portal frame structure and compare with the 

results studied. 

Table 4.3. Dimensions of section cross-section steel in the Portal frame 
Elements bf (mm) tf (mm) d (mm)  tw (mm) 
W12x27 165 10,16 304 6,02 
W12x50 205,2 16,26 309,6 9,4 

 

 
Figure 4.18. Composite Portal frame 

subjected to concentrated load 

 
Figure 4.19. Load-horizontal displacement 

relationship of point A 
 

 
 

Figure 4.20. Plastic hinge formation of 

Portal frame 

 

 
Figure 4.21. Stiffness EIt/EImax and plastic flow 

rate of the column, beam section at plastic failure 

state  
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Commenting results:  

- From the graph in Figure 4.19, it is noticeable that when the material is still elastic, the 

results of the study completely coincide with the results running from the SAP2000 program, 

when the elastic plastic the results coincide with the previous research results (CG Chiorean 

2013), that confirms the reliability of the research method. 

- From the graph of Figure 4.19, it is clear that the load-displacement relationship is 

nonlinear, from elasticity, elastic plastic and fully plasticity, it is possible to determine the 

internal force of the composite Portal frame at any step until the frame is damaged. 

- From the graph of Figure 4.19, when using distributed plastic hinge method (22 points 

of plastic deformation), it is found that when the structure is flexible, with the same load level 

for smaller displacement than the displacement of plastic hinge method (2 points plasticity 

deformation). This shows that when using multi-point plastic element, the frame structure is 

better than that of conventional element. 

- From the graph of Figure 4.20 shows the order of forming plastic hinges, the first plastic 

hinge appear at the top of the right beam, the next plastic hinge appear at the foot of the 

column and finally at the middle of the beam. From the graph in Figure 4.21 shows the 

EIt/EImax  stiffness and plastic flow rate (%) of the beam cross-section, the column is in the 

plastic destructive state, the right beam top section is 100% plastic, the sections adjacent to to 

the plastic flow 95%, 83% .... the section middle the beam spans 100%, the sections adjacent 

to the plastic flow 97%, 88% .... and plastic flow spread gradually to the side. According to  

the value of plastic flow rate, it is possible to evaluate the reserve of bearing capacity of each 

section in beams and columns, which is a new point when using multi-point plastic elements 

in the proposed distributed plastic deformation method. 

- SPH program for short structural analysis time with 2 minutes 40s, it should be said that 

the equations and solutions are optimal, confirming the advantages of the research method 

(reducing the calculation volume in analysis process) and it will be very convenient to plastic 

structure analysis of tall buildings with a large number of elements. 

4.4.4.  Composite steel - concrete frame with 3 floor and 2 span 

Investigation of 3-span 2-span composite steel-concrete frame, structural diagrams 

conducted by Li, Guo.Qiang and Li, Jin.Jun (2007) with composite steel-concrete beams with 

rigid connection at 2 ends of steel columns, W12x50 steel columns, cross section beam 

includes W12x27 steel and 102x1219 mm concrete slabs as shown in Figure 4.22 and table 

4.4. The load is concentrated horizontally at the nodes of P (kN), the distributed load is on the 

beams as shown in Figure 4.23, the loading step is nstep = P/100 and nstep=q/100. Compressive 

strength of concrete fc
'= 16MPa, fct = 1,2MPa, elastic modulus of concrete 

1.5 '0.043c cE f

= 21,5.103MPa, 0 = 0.002, u = 0.004. Yield stress of beam steel fy=252,4MPa, elastic 

modulus of steel Es = 2.105 MPa. Li, Guo.Qiang and Li, Jin.Jun used the elastic plastic hinge 

method to analyze the structure. Applying the proposed research results, using the finite 

element method with distributed multi-point plastic bar elements to analyze the structure of 

Li frame with 3 floors and 2 spans and compare with the researched results. Column elements 

use 5 plastic deformation points, beam elements use 9 plastic deformation points. 
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Figure 4.22. Section of beams, steel columns, 

composite beams in plane frames 

 

Element bf  

(mm) 

tf  

(mm) 

d  

(mm)  

tw  

(mm) 

W12x27 165 10,16 304 6,02 
W12x50 205,2 16,26 309,6 9,4 

 

Table 4.4. Dimensions of section steel in 

3 floor frame with 2 spans 
 

 
Figure 4.23. Li composite plane frame 3 

floors and 2 spans 

 

 
 

 Figure 4.24. Internal force-top 

displacement relationship of Li frame with 3 

spans of 2 spans associated with each load step 
 

 
Figure 4.25. Plastic hinge formation of Li 

frame 3 floors and 2 spans   

 
Figure 4.26. Stiffness EIt/EImax and plastic flow 

rate of the column, beam section frame at plastic 

failure state 

Commenting results:  

- From the graph in Figure 4.24, it can be clearly seen that when the material is still elastic, 

the results of the study completely coincide with the results running from the SAP2000 

program, when the elastic plastic the results coincide with the previous research results (Li 

and Li), that confirms the reliability of the research method. 
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- From the graph in Figure 4.24, we can clearly see that the load-displacement relationship 

is nonlinear, from elasticity, elastic plastic and fully plasticity, we can determine the internal 

force of the plane frame. 

- From the graph in Figure 4.24, when using distributed plastic hinge method, it is found 

that when the structure is flexible, the same load capacity for displacement is smaller than the 

displacement of the flexible plastic hinge method (2 points plasticity deformation). This 

shows that when using multi-point plastic element, the frame structure is better than that of 

conventional element. 

- From the graph in Figure 4.25 showing the order of forming plastic hinge, the first 

plastic hinge appear at the top of the right beam of the first floor, the next plastic hinge appear 

when increasing the effective load. 

- From the graph in Figure 4.26 shows the stiffness of EIt/EImax  and plastic flow rate (%) 

of cross section of beams and columns in the state of plastic failure. Through the value of 

plastic flow rate, it is possible to evaluate the reserve of bearing capacity of each section in 

beams and columns, which is a new point when using multi-point plastic elements in the 

proposed distributed plastic deformation method. 

- SPH program for short structural analysis time with 4 minutes 15s, it should be said that 

the equations and solutions are optimal, confirming the advantages of the research method 

(reducing the calculation volume in analysis process) and it will be very convenient to plastic 

structure analysis of tall buildings with a large number of elements. 

CONCLUSION 

NEW RESULTS OF THE THESIS 

1. Building the curve (M-) relationship of the steel and composite steel-concrete beam 

to determine the tangent stiffness of these components at different points when the material 

works in the elastic phase, elastic - plastic and plastic. Establish SPH program to build this 

relationship. 

2. Building the equation of elastic limit surface, intermediate plastic surface, fullly plastic 

surface (failure surface) of the doubly symmetrical wide flange I-section subjected to axial 

force combined with biaxial bending moments by analytical method and building program to 

show that surface. The plastic surface depends on the shape of the section and the plastic 

rotation angle of the section when plastic flow, thus showing the spread plasticity of the steel 

column cross section during structural analysis. At the same time, based on the plastic surface 

(interactive surface for bending resistance in two directions), it is possible to test the bearing 

capacity of the column section, considering that the column section is still in the working 

state elastic, plastic or has been failured. It has practical significance to evaluate the bearing 

capacity of the column section corresponding to a certain design load. 

3. Building a finite element method and application program for nonlinear analysis of 

the frame structure with steel column and composite steel-concrete beam considering the 

plasticity of the material and the spreading plasticity of the structural system. The method has 

reliability and accurate results compared to the actual working of the structure, significantly 

reducing the size of the problem of structural analysis, increasing the calculation speed 

quickly. 

DEVELOPMENT ORIENTATIONS OF THE THESIS 

1. Continuing to research and develop the plastic and failure surface equations for steel 

column sections of any shape and composite column section. 

2. Building analytical theory for the structural problem of dynamic load. 

3. Plastic analysis of the composite structure with concrete-covered columns subjected 

to static and dynamic loads. 
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